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Preface 
A-level Physics is a hard subject. It is hard because there is a lot of contents and the problems are 
hard to solve. In this series of Stanley's Study Guides, I attempt to summarise the concepts found in 
the Cambridge International Examination's A-level Physics syllabus (code 9702). This is to allow 
students to focus on the key concepts and prepare well for their examinations. 

This volume on General Physics covers the following topics of the A2-level Physics curriculum in the 
Cambridge International Examinations: 

• Circular motion 
• Gravitational fields  
• Electric fields 
• Simple harmonic motion 
• Ideal gas 
• Temperature 
• Thermal properties of matter 

All the best to your study.  

Thank you 
Stanley 
June 2018 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1

Unit and uncertainty 

1.1	 Unit prefixes 

Prefixes are used to simplify the representations of very large or small numbers. They reduce the 
number of zeros in a quantity. 
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TABLE 1.1 THE TEN PREFIXES ARE USED TO SHORTENED NUMERICAL REPRESENTATIONS.

prefix symbol value example

pico p × 10–12 picometer(pm)

nano n × 10–9 nanometer(nm)

micro μ × 10–6 micrometer(μm)

milli m × 10–3 millimeter(mm)

centi c × 10–2 centimeter(cm)

deci d × 10–1 decimeter(dm)

kilo k × 103 kilometer(km)

mega M × 106 megameter(Mm)

giga G × 109 gigameter(Gm)

tera T × 1012 terameter(Tm)



1.2	 Base units 

The 6 base units in Table 
1.2 are used extensively 

throughout the study of 
this course. These base 
units are often combined to 

form derived units.  

1.3	 Derived Units 

Derived units are units based on the combinations of two or more base units. Some examples are speed 

and volume.  
Follow the procedure to find the unit of a physical quantity: 
1. Express the relevant physical quantity as the subject of the formula. 

2. Replace the physical quantities by their respective base units. If a quantity is a derived quantity and 
is not trivial to express its unit as base units, then you may need to perform additional steps(#1, #2 
and #3) until you found its unit in terms of base units. 

3. Evaluate. 

EXAMPLE 1 
Find the base units of speed. 

Solution 

Step 1: Write down the formula of speed. 
   !  

Step 2: Replace the physical quantities with the units. 

   !  

Step 3: Evaluate. 

   !  

v =
s
t

unit of speed =
unit of distance

unit of time

unit of speed =
m
s

= m s−1
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TABLE 1.2 SIX BASE PHYSICAL QUANTITIES 
Take particular note that only mass has a prefix of kilo in its SI unit. The 
SI units of other physical quantities has no prefixes. 

Also note that a 7th physical quantity luminosity, is not in the syllabus.

Physical quantity SI unit symbol

mass kilogram kg

length metre m

time second s

electric current ampere A

temperature kelvin K

amount of substance mole mol



EXAMPLE 2 
Find the base units of force. 
Solution 

Step 1: Write down the formula of force. 
   !  
Step 2: Replace the physical quantities with the units 

   !  
Step 3: Evaluate. 

   !  

EXAMPLE 3 
Young modulus is the ratio of stress to strain. Stress is defined as the ratio of force per unit cross-
sectional area while strain is the ratio of extension to the original length. 
Find the base units of Young modulus. 

Solution 

Step 1: Write down the formula for Young modulus. 

   !  

Step 2: Replace the physical quantities with the units. 
We can work out the units of stress and strain separately because they are not trivial. 

!  

!  

!  

F = ma

unit of force = unit of mass × unit of acceleration

unit of force = kg × m s−2

= kg m s−2

E =
stress
strain

stress =
force
area

=
F
A

units of stress =
kg m s−2

m2

= kg m−1s−2

strain =
extension

original length

unit of strain =
m
m

= no unit

∴ unit of E = kg m−1s−2
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1.4	 Unit consistency 

Whenever two quantities of the same nature exists in an equation, care must be taken to ensure that 
they have the same prefix. 

EXAMPLE 4 
Calculate the average speed of the car given that it travelled the journey in two parts: 

Part 1: 2.5 km in 2.0 min 
Part 2: 1500 m in 1.5 min 
Solution 

!  

!  

!  

1.5	 Homogeneity of Equation 

In any equation where each term has the same base units, the equation is said to be homogeneous.  
If A + B = CD, then  
!  
i.e. the unit of A = the unit of B = the unit of CD 
The square brackets represent “the units of”. 

Every equation must be homogeneous.  

• An equation that is homogeneous may not be correct. 

• If an equation is not homogeneous, then the equation must be invalid.  

To illustrate the above statements,  

• !  : this equation is homogeneous and is true. 

• ! : this equation is homogeneous but is false. 

• ! : this equation is not homogeneous and is false. 

Total distance travelled = 2500 + 1500
= 4000 m

Total time taken = 120 + 90
= 210 s

average speed =
total distance travelled

total time taken

=
4000
210

= 19.0 m s−1

[A] = [B] = [CD]

EK = 1
2 mv2

EK = mv2

EK = 1
2 mv3

�9



EXAMPLE 5 
 Froude number is the ratio of the inertia forces to the gravitational forces and it has a formula  

!  

where v is the velocity of the object, g is the gravitational acceleration and l represents length. n is a 
constant with no unit.  

Determine the value of n. 
Solution 

The strategy is to equate the unit of the LHS of equation to the RHS of equation since in a valid 

equation, the units of LHS must be consistent with the units of RHS. 

Froude number has no unit because it is a ratio of force to force. Note that being a ratio is NOT 

the reason for it to have no unit. A ratio can have units e.g. speed is the ratio of distance to time. 

Now, we have to work on the unit of RHS 

!  

!  

Fr =
vn

gl

unit of RHS =
mn s−n

m s−2 ×  m

=
mn s−n

m2 s−2

=
mn s−n

m s−1

∴ n = 1
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FIG. 1.1 HOW AN EQUATION IS TRUE OR NOT RELATE TO 
THE HOMOGENEITY OF THE EQUATION 
A homogeneous equation may be true or false, but a 
non-homogeneous equation but be false. 



1.6	 Measurements 

Table 1.3 shows the precision of some common measuring instruments. The precision of a measuring 
instrument determines how you will record the values. From reading the recorded values, you will be 

able to determine the precision of the instrument used. Hence it is important that when recording a 
measured reading, care must be taken to include the necessary decimal digits. 

1.7	 Systematic and Random Errors 

Systematic error 

A systematic error results in all readings being above or below the true value. This error cannot be 
eliminated by repeated readings and taking average. Systematic error can only be reduced by 
improving experimental techniques or by accounting for the error (such as adding or subtracting the 

error). 
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Quantity Instrument Precision

Length

metre rule 1 mm

vernier callipers 0.1 mm

micrometer screw gauge 0.01 mm

Pressure
manometer 1 mm

barometer 1 mm

Mass
top-pan electronic balance 0.01 g

spring balance varies e.g. 1 g

Angle protractor 1º, 0.5º

Time stopwatch 0.01 s

Temperature
mercury-in-glass thermometer 1ºC, 0.5ºC

thermocouple 0.1 ºC

Current
analogue ammeter 0.01 A to 0.1 A

digital ammeter 0.01 A

Volt
analogue voltmeter 0.1 V - 0.2 V

digital voltmeter 0.01 V

TABLE 1.3 PRECISION OF SOME COMMON MEASURING INSTRUMENTS



Examples of systematic errors 

• Zero error 

• Wrongly calibrated scale 

• Un-tared reading of mass on an electronic balance 

Random Error 

Random error results in readings being scattered around a mean value. Random error may be reduced 

by repeating a reading and averaging, or by plotting a graph and drawing a best-fit line. 

Examples of random errors 

• timing oscillations of pendulum 

• taking readings of a quantity that varies with time 

• reading a scale from different angles (parallax error) 

Accuracy and precision 

Accuracy refers to how close the experimental values are to the true value. If the average of the data is 
close to the true value, then the data is said to be accurate. 

Precision refers to how close the experimental values relate to each other. If the difference between the 
values are small, the data is said to be precise. 

1.8	 Uncertainty 

Uncertainty of a measured quantity depends on a few factors: 

1. If the instrument has a fixed end, uncertainty takes the value of half the smallest interval of the 
measuring instrument. Instruments with fixed ends are  
(i) measuring cylinders 

(ii) liquid-in-glass thermometers 
2. If both ends of the instruments are needed to measure the item, the uncertainty takes the value of 

the smallest interval. Ruler belongs to this category i.e. uncertainty = 1 mm. 

3. Digital meters has uncertainty that equals to the least significant digit. 
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1.9	 Uncertainties of a derived quantity 

Two rules to obtain the uncertainty of a derived quantity: 

Rule 1 

For quantities which are added or subtracted to give a final result, add the absolute uncertainties.  

!  

Notes: 
1. Absolute uncertainties are always added up, even if the quantities are subtracted e.g. y – 2z. 
2. Multiplying factors in the physical quantities (2z) are also multiplied in the absolute uncertainties 

(2 Δz). 

Rule 2 

For quantities which are multiplied or divided to give a final result, add the fractional uncertainties. 

Fractional uncertainty is the fraction of the actual uncertainty divide by the data value. 

!  

x = y ± 2z
Δx = Δy ± 2Δz (1.1)

A =
3B2

C
ΔA
A

= 2
ΔB
B

+
ΔC
C

(1.2)
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TABLE 1.4 THIS TABLE SHOWS HOW SOME MEASUREMENTS ARE WRITTEN 
ACCORDING TO THE MEASURING INSTRUMENTS.

instrument uncertainty typical reading wrong reading

liquid-in-glass 
thermometer ±0.5 ºC 22.5 ºC, 24.0 ºC 22.3ºC

analogue 
ammeter with 0.1 

A division
±0.05 A 0.15 A, 1.20 A 0.17 A

ruler with 1 mm 
intervals ±0.1 cm 5.7 cm, 10.0 cm 10.00 cm

digital stopwatch ±0.01 s 16.22 s, 15.01 s, 
17.79 s 16.220 s



Notes: 
1. Fractional uncertainties are used in formula that involves multiplication or division. 
2. Since ! , the power is bought down as the multiplying factor in the fractional 

uncertainty. 
3. Multiplying factors are ignored in the fractional uncertainty. 

1.10		 Expressing a quantity with its uncertainty 

Uncertainty is usually expressed to one significant figure and the measured quantity is expressed to the 
same precision as the uncertainty. 

i.e. if the uncertainty is calculated to be 0.17 cm s–1  and the measured quantity is 23.4 cm, the the 

correct way to express the quantity is 

!  

Notes: 

1. The uncertainty 0.17 cm s–1 is written to 1 significant figure i.e. 0.2 cm s–1. 

2. The uncertainty 0.2 cm s–1 has a 0.1 cm s–1 precision(one decimal place). Hence, the main quantity 

is written to the same precision i.e. 23.4 cm s–1(one decimal place). 

End of chapter 

Bn = B × B . . . × B

(23.4 ± 0.2) cm s−1
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2

Kinematics 

2.1	 Equations of motion 

Definition of average speed: 

Average speed is defined as the total distance covered in the time taken.  

!  

The SI unit of speed is metres per second .  

EXAMPLE 1 
The radius of the Earth is 6400 km. One revolution about its axis takes 24 hours. Calculate the average 
speed of a point on the equator relative to the centre of the Earth. 
Solution 

!  

  

average speed =
total distance

time taken
(2.1)

average speed =
total distance

total time

=
2πr

t

=
2π (6400)
24 × 3600

= 0.461 km s−1
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2.2	 Speed and velocity 

Speed is a scalar quantity. It has magnitude only. 
Speed is distance travelled per unit time as shown in Eq (2.1). 

Velocity is a vector quantity. It has both magnitude and direction. 

Velocity is displacement travelled per unit time. 

         !  

The important point regarding this formula is that it can only be used to calculate the average velocity 

of a particular journey and not the initial or the final velocity in a linear motion with acceleration. 

2.3	 Acceleration 

Definition of acceleration: 

Acceleration is the rate of change of velocity. 

!  

An object is said to be accelerating when its velocity changes: 

• only the speed changes e.g. the object is moving faster or slower. 

• only the direction of motion changes e.g. circular motion. 

• both speed and direction changes e.g. projectile motion. 

EXAMPLE 2 

A sprinter, starting from the blocks, reaches his full speed of 9.0 m s–1 in 1.5 s.  
What is the average acceleration? 

Solution 

!  

average velocity =
displacement

time taken
(2.2)

a =
v2 − v1

t2 − t1
(2.3)

a =
change in velocity

time taken

=
v − u
t2 − t1

=
9.0 − 0

1.5
= 6.0 m s−2
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EXAMPLE 3 
A car is travelling at a constant speed of 25 m s–1. It then increases its speed to 30 m s–1 in 2.5 s.  
What is the average acceleration of the car? 

Solution 

!  

2.4	 Deriving the equations of kinematics 

From the  Eq (2.3),  

!  

where v is the final velocity, u is the initial velocity and t is the time taken for the acceleration. 

For an object moving with constant acceleration a, the average velocity can be expressed using the 

relationship 

              !  

From Eq (2.4), replace t by ! , 

      !  

These three equations of kinematics are only applicable if the object is moving at constant acceleration. 

a =
v − u
t2 − t1

=
30 − 25

2.5
= 2.0 m s−2

a =
v − u

t
v = u + at (2.4)

vavg =
s
t

=
u + v

2
2s = ut + vt

= ut + (u + at)t
= 2ut + at2

s = ut+ 1
2 at2 (2.5)

v − u
a

s = u( v − u
a )+ 1

2 a( v − u
a )

2

v2 = u2 + 2as (2.6)
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To summarise, 

!  

In all these equations, the symbols represent: 
v: final velocity 
u: initial velocity 

s: displacement 
a: acceleration 
t: time taken 

EXAMPLE 4 
A ball is dropped from rest at a height of 2.0 m. Calculate the time it takes for the ball to reach the 
ground. 
Solution 

u = 0 m s–1 
v: not applicable 

s = 2.0 m 

a = 9.81 m s–2 

t: to calculate 

!  

v = u + at (2.4)

s = ut+ 1
2 at2 (2.5)

v2 = u2 + 2as (2.6)

s = ut+ 1
2 at2

2.0 = 1
2 (9.81)t2

t = 0.64 s
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EXAMPLE 5 
A plane must reach a speed of 100 m s–1 to take off. If the available length of the runway is 2.4 km and 

the aircraft accelerated uniformly from rest at one end, what minimum acceleration must be attained if 
it is to take off? 

Solution 

u = 0 m s–1 

v = 100 m s–1 

s = 2400 m 
a: to calculate 

t: not applicable 

!  

EXAMPLE 6 
A ball is thrown vertically upwards with a speed of 5.0 m s–1. What is its velocity when it first passes 

through a point 1.0 m above the cricketer’s hands? 
Solution 

This is the first scenario where the acceleration is in opposite direction to the initial velocity of 

the object. In such situations, a negative needs to be appended to the acceleration value i.e. the 
object is decelerating. 

u = +5 m s–1 

v: to calculate 

s = 1.0 m 

a = –9.81 m s–2 

t: not applicable 

!  

v2 = u2 + 2as

a =
v2 − u2

2s

=
1002 − 02

2 × 2400
= 2.1 m s−2

v2 = u2 − 2as
= 5.02 − 2(9.81)(1.0)

v = 2.3 m s−1
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2.5	 Graphs of motions 

There are in general, two types of graphs related to motion: 

• displacement-time 

• velocity-time 

displacement-time graph 

• The gradient at a point represents the instantaneous 
velocity at that point.  

• In Fig. 2.1, the velocity at P can be found from the 
gradient of the tangent at P. 

velocity-time graph 

• Gradient at a point represents acceleration at 

the point. 

• Area under graph represents the displacement 
travelled. 

The acceleration of the body at point P in Fig. 2.2 
can be obtained by find out the gradient of the 

tangent at point P. Since the gradient decreases from 
O to Q, the acceleration of the body also decreases 
from O to Q.  After point Q, the body moves with 

constant velocity i.e. zero acceleration. 

Fig. 2.3 shows a very common velocity-time graph is that of a body falling freely from rest. Since the 

gradient represents the acceleration due to gravity, the gradient of OA is 9.81 m s–2. The direction of the 

acceleration is down, so the gradient should be negative. The distance the body fell during this time is 
represented by the shared area. 

Another scenario is an object moving upwards with a velocity, reaches its maximum height, and fall 
back to its starting position, in the absence of air resistance. Similar to the first scenario, the gradient 

represents the acceleration of gravity and it should be a linear straight line with a negative gradient if 

value 9.81 m s–2. 
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FIG. 2.2 VELOCITY-TIME GRAPH 
The gradient of a v-t graph represents the 
acceleration of the body.

FIG. 2.1 DISPLACEMENT-TIME GRAPH 
The gradient of an s-t graph 
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2.6	 2D motion – projectile motion 

When an object travels with a uniform velocity in one direction, a perpendicular force causes its 

direction to deviate from the original direction. 
To solve problems involving this type of motion, resolve the velocity into two directions: 

Parallel to the direction of force 
The motion is equivalent to a uniform acceleration in the direction of the force. The three kinematics 
formulae should be used: 

!  

Perpendicular to the direction of force 
Velocity remains constant in this direction.  

Use “ !  ”. 

v = u + at
s = ut+ 1

2 at2

v2 = u2 + 2as

v =
s
t
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FIG. 2.3A V-T GRAPH OF A BODY FALLING 
FROM REST
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FIG. 2.3B V-T GRAPH OF A BODY THROWN UPWARDS AND 
FALLING FREELY UNDER GRAVITY.



EXAMPLE 7 
A ball was thrown horizontally from a 10 m height. 

!  

Calculate 
(i) the time it took to hit the ground, 

Vertically: 

u = 0 m s–1 

v: not applicable 
s = 10 m 

a = 9.8 m s–2 

t: to calculate 

!  

2.0 m s–1

10 m

s

s = ut+ 1
2 at2

t =
2(s − ut)

a

=
2(10 − 0)

9.81
= 1.4 s
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(ii) the horizontal distance s. 
Solution 

Since it took 1.4 s for the ball to hit the ground, it also took the ball the same time to travel s 

horizontally since it is the same ball. 

Horizontally, there is no acceleration. Hence, we use ! . 

!  

2.7	 Resolving velocity into two directions 

Velocity could be resolved into two perpendicular directions 
when solving a 2D projectile motion problem. The velocity 
vector must always be the hypotenuse of the right-angle 

triangle. 

EXAMPLE 8 
A ball was thrown at an angle of 30º from the horizontal with a speed of 5.0 m s–1. 

 �  

s = vt

s = vt
= 2.8 m

h

s

5.0 m s–1
30º
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FIG. 2.4 RESOLVING A VECTOR INTO 
TWO PERPENDICULAR DIRECTIONS.

vcos θ 

v sin θ 
v

θ 



Calculate  
(i) the maximum height that the ball reached, 
Solution 

Vertically,  

u = 5.0 sin30º = 2.5 m s–1 

v = 0 m s–1 

s: to calculate 

a = 9.81 m s–2 

 t: not applicable 

!  

(ii) the horizontal distance when the ball touched the ground. 
Solution 

Horizontally,  

  

 !  

End of Chapter 

vertical component of velocity = 5.0 sin 30∘ = 2.5 m s−1

v2 = u2 + 2as
02 = 2.52 − 2(9.81)s

s = 0.32 m

v = u + at
0 = 2.5 − 9.81t
t = 0.25 s

horizontal component of velocity = 5.0 cos 30∘ = 4.3 m s−1

s = 2 × 4.3(0.25) = 2.2 m
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3

Dynamics 
 

3.1	 The concept of mass 

Mass is the property of a body that resists change in motion. 
A body tends to continue its motion in the same way. If a body is at rest, it will tend to continue at rest. 

If it is moving, it will tend to continue its motion at the same speed in the same direction. 

3.2	 Newton’s first law 

Definition of Newton’s first law: 

An object will continue its state of motion at the same velocity in the absence of a resultant 
force acting on it. 

If there is no net force acting on a body, it will continue its current state of motion. That means it will 
continue to move at a constant speed in the same direction. It should not slow down unless there is an 
opposing force. 

3.3	 Linear momentum 

Definition of momentum: 

Momentum is defined as the product of mass of the body and its velocity. 

       !  

where p is the momentum, m is the mass and v is the velocity. The SI unit of momentum is kg m s–1. 

p = mv (3.1)
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3.4	 Newton’s second law 

The resultant force acting on a body is directly proportional to the acceleration of the body. The 
constant of proportionality is mass of the body. 

      !  

where F is the resultant force, a is the acceleration and m is the mass of body. The SI unit of force is 
newton (N). 

Note that F and a are always in the same direction.  

Force and velocity 

The most common misconception by students is that the resultant force 
is in the same direction as the velocity. This idea is completely incorrect. 

Velocity has no direct relationship with force.  

In Fig. 3.1, the ball is thrown upwards at point A with an initial velocity 

of +v. However, there is only one force, that is the weight w, acting on 
the ball down. Similarly, the velocity at point C is –v, down and the 
weight is also downwards. Velocity is 0 at point B while the weight is 

still acting downwards. This shows that force and velocity has no direct 
relationship with each other. 

F = ma (3.2)
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point net force (w) velocity (v)

A down up

B down 0

C down down

TABLE 3.1 THIS TABLE SUMMARISES THE 
DIRECTIONS OF THE NET FORCE AND THE 
VELOCITY OF A BALL THROWN UPWARDS AND 
FALLS FREELY UNDER GRAVITY.

A

B

C+v –v

v = 0

w w

FIG. 3.1 RELATIONSHIP 
BETWEEN FORCE AND 
VELOCITY AT DIFFERENT 
PARTS OF A MOTION 
This diagram shows that 
velocity and the net force 
acting on an object can 
have different directions. 
Net force in the same 
direction of the velocity 
cause it to accelerate while 
net force in opposite 
direction of the velocity 
causes it to decelerate.



Definition of Newton’s second law: 

The resultant force acting on an object is directly proportional to the rate of change of 
momentum. 

     !  

where F is the resultant force acting on an object, Δp is the change in momentum and Δt is the time 
taken for the momentum change . 1

It is important to note that when p and t are expressed in SI units, the constant of proportionality would 
be 1. Hence the "equal" sign for the Newton's second law. 

EXAMPLE 1 
(a) What is the change in momentum of a body of 500 g mass moving from rest to 3.0 m s–1 in  

5.0 s? 

Solution 

!  

(b) What is the average resultant force acting on the body? 
Solution 

!  

F =
Δp
Δt

(3.3)

Δp = mv − mu
= 0.500(3.0) − 0
= 1.5 kg m s−1

F =
Δp
Δt

=
1.5
5.0

= 0.30 N

 It is also important to note that the usual definition (or equation F = ma) that force is the product of mass and acceleration is no longer accepted 1

as a valid definition for the AS level examination because it is a special situation of the above definition.
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EXAMPLE 2 
A 100 g ball moving towards a wall at 3.0 m s–1 hits the wall and bounces back with the same speed 

after a brief contact of 0.20 s with the wall. Calculate the average force acting on the ball during its 
contact with the wall. 

Solution 

!  

3.5	 Newton’s third law 

Definition of Newton’s third law 

For every action force acting on a body, there is an equal in magnitude force acting on the 

other body in the opposite direction. 

For two forces to be considered as the action-reaction pair, they need to satisfy the following 

conditions: 

• equal in magnitude 

• opposite direction 

• same in nature 

• acting on different bodies 

Identifying the action-reaction pair of forces 

It is important to identify action-reaction pairs of forces. While the weight 

and the normal contact force acting on a body at rest on a surface are equal 
and opposite, these two forces are not action-reaction pair. 

To identify action-reaction pair, you would need to first determine the action 
force acting on a body A due to another body B. The reaction force would be 
the force acting on body B due to body A. 

F =
Δp
Δt

=
−0.100(3.0) − 0.100(3.0)

0.20
= 3.0 N

�28

w

N

FIG. 3.2 FORCES 
ACTING ON A BODY AT 
REST ON A SURFACE 
N and w are not 
action-reaction pair 
even through they are 
equal and opposite. 



EXAMPLE 3 
Identify the reaction force of the normal contact force acting on a ball resting on a surface. 

!  
Solution 

It is a good practice to draw the forces on a body. This is called the free body diagram.

!  
The action force is the normal contact force acting on the ball by the surface. 
The reaction force is the normal contact force acting on the surface by the ball. 

EXAMPLE 4 
Identify the reaction force of the weight of the ball in Example 3. 
Solution 

!  
The action force is the force of gravity acting on the ball by the Earth. 
The reaction force is the force of gravity acting on the Earth by the ball. 

ball

Earth
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3.6	 Weight and its effect on motion 

Definition of weight: 

Weight is the force of gravity on a mass. 

A mass in a gravitational field experiences weight. Since weight is the product of mass and the 
gravitational field strength, its value is constant. 

      !  

where w is the weight of the object, m is the mass and g is the gravitational field strength. 

The resultant force acting on the mass is always towards the ground and has the magnitude of mg. This 
is regardless of whether the moving is moving up or down (Fig. 3.1). 

3.7	 Falling with air resistance 

An object falling in air experiences air resistance. Its acceleration will not be constant as the resultant 

force on the mass is different as compared to the situation when there is no air resistance. 
Object moving up: !  
Object moving down: !  

w = mg (3.4)

resultant force = mg + R
resultant force = mg − R
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FIG. 3.3A AN OBJECT MOVING UP IN A MEDIUM 
Resistance is always in opposite direction to 
motion. Since it is moving up, the air resistance 
would be downwards. Thus, the net force is the 
sum of weight and resistance. This results in a 
larger deceleration in the upward direction.

a =
W + R

m

mg + R 

v

mg

v

R

FIG. 3.3B AN OBJECT MOVING DOWN IN A MEDIUM 
Since the ball is moving down, the air resistance 
would be upwards. Thus, the net force is the 
difference of weight and resistance. This results in 
a smaller acceleration in the downward direction.

a =
W − R

m



3.8	 Conservation of momentum 

The principle of conservation of momentum states that in the absence of external forces, the 
total momentum in a system before and after a collision is constant. 

This conservation law applies to all situations if the whole system is considered. A system refers to all 
the interacting bodies such that there are no external forces acting on any of the bodies in the system.  

In the case of a falling body, it is obvious that its momentum changes. An external force in the form of 
its weight acts on the falling object and so it is not considered as an isolated system. However, if the 
cause of the weight, which is the Earth, is considered together as a system, then the law of conservation 

of momentum still hold. In such a situation, the increase in the body’s momentum (when it is falling 
down) is compensated by the decrease in the Earth’s momentum (which is also accelerating towards the 
body, thus negating any increase in the ball’s momentum). 
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FIG. 3.4A VELOCITY-TIME GRAPH OF AN 
OBJECT FALLING WITHOUT AIR RESISTANCE

FIG. 3.4B VELOCITY-TIME GRAPH OF AN 
OBJECT FALLING WITH AIR RESISTANCE 
When the object starts falling at O, it falls 
with an acceleration of g. Thus, the 
gradient at O has a magnitude of g. As it 
fall further, the gradient (deceleration) 
decreases, until it reaches point A from 
which it will travel at its terminal velocity. 
The deceleration is zero from A onwards.
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3.9	 Collisions 

There are in general, two types of collisions in terms of kinetic energy: 

Elastic collision 

The kinetic energy of the colliding bodies before 

and after the collision is constant. 

In an elastic collision, the relative speed of approach 
is equal to the relative speed of separation. 
relative speed of approach = !  

relative speed of separation = !  

!  

This formula can be used regardless of weather 
the masses of A and B are equal or not. 

EXAMPLE 5 

Ball A is moving towards a stationary ball B with a speed of 2.0 m s–1. If the collision is elastic, 

calculate the speeds of the two balls after separation. Assume that both balls have the same mass. 

Solution 

relative speed of approach = relative speed of separation 
Assuming that both A and B are moving to the right with speed vA and vB after collision, 

!  

By conservation of momentum, 

!  

uB − uA

vA − vB

uB − uA = vA − vB

uA − uB = vB − vA

2 − 0 = vB − vA

vB − vA = 2

mAuA + mBuB = mAvA + mBvB

2 + 0 = vA + vB

∴ vA = 0, vB = 2 m s−1
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FIG. 3.5 VELOCITIES OF BODIES BEFORE AND AFTER 
COLLISIONS IN AN ELASTIC COLLISION.
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before collision
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Inelastic collision 

The kinetic energy of the colliding bodies after the collision is less than before the collision. The 
kinetic energy is lost to other forms of energy, such as elastic potential energy, heat or sound.  
In a perfectly inelastic collision, the colliding bodies stick together. This scenario represents the 

greatest loss of kinetic energy in the collision. 

However, the total momentum in a collision (elastic and inelastic) is always constant. 

 

End of Chapter 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FIG. 3.6 DIAGRAM SUMMARISES THE TWO TYPES OF 
COLLISIONS: ELASTIC AND INELASTIC COLLISIONS.

Collision

Elastic
1. kinetic energy is conserved

2. relative speed of 
approach = relative speed 

of separation

Inelastic
loss of kinetic energy

Perfectly inelastic
max. loss of kinetic energy. 

Objects stick together after collision

Momentum is conserved in all collisions



4

Forces 

4.1	 Turning effects of forces 

Moment 

The moment of a force equals to the product of the force and the perpendicular distance of 

the pivot from the force. 

!  

where !  is the perpendicular distance of the force F from the pivot. 

Principle of moment 

For any object that is in equilibrium, the sum of the clockwise moments about any point 

provided by the forces acting on the object equals to the sum of the anticlockwise moment 
about the same point. 

Couple and torque 

A couple is a pair of forces that has the following 

characteristics: 
1. equal in magnitude 
2. parallel but opposite in direction 

3. separated by a distance d 

moment = F × d⊥ (4.1)

d⊥
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d

P

FIG. 4.1 A COUPLE 
A couple is a pair of forces that are 
equal in magnitude, parallel but 
opposite and separated by a 
distance.



Torque is the moment produced by a couple. 

Torque of a couple = one of the two forces × perpendicular distance between the forces 

      !  

Note that Eq (4.2) does not invalidate the usual way to calculate moment as in Eq (4.1). It can be 
shown that Eq (4.1) and Eq (4.2) are consistent. 

4.2	 Conditions for equilibrium 

There are two conditions to be satisfied if a body is in equilibrium. Equilibrium is the condition when 

an object is neither accelerating in any direction nor is it rotating about any pivot if it was initially not 
in any rotation motion . 2

1. The net force on the object is zero. 
2. The net moment on the object is zero. 

If condition 1 is not met, the body would accelerate in the direction of the net force. Similarly, if 
condition 2 is not met, the body would rotate in the direction of the net moment. 

A common scenario of the application of the principle of moment is the case of a uniform rod of weight 
W held in balance by a rope of tension T as shown in Fig. 4.2.  

Since the rod is in equilibrium, then it must satisfy both conditions of equilibrium as explained next: 

τ = F × d⊥ (4.2)

 In CIE questions, objects are always in non-rotating setups. As such, equilibrium condition #2 requires that the object to stay in non-rotating 2

motion since it has no initial angular momentum, the rotation equivalent of linear momentum.
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Net force is zero 

The horizontal component of T equals to the 
horizontal component of R. The vertical components 
of T and R equals to the weight W. The object does 

not accelerate. 

!  

Net moment is zero 

The clockwise moment produced by W equals to the 
anticlockwise moment produced by T. If the object is 

originally at rest, it will not start to rotate. 

!  

It can be seen that the three forces, W, T and R, must pass through the same point at C so that no net 
moment is created by any of the forces. 

End of Chapter 

R cos α = T cos θ
R sin α + T sin θ = W

W × d
2 = T sin θ × d
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FIG. 4.2 A UNIFORM BEAM IN EQUILIBRIUM HAS 
NO NET FORCE AND NO NET MOMENT.
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5

Pressure and density 

5.1	 Density and pressure 

Definition of density: 

Density is defined as the mass per unit volume. 

       !  

where ρ is the density of the substance, M is the mass of the substance and V is the volume of the 
substance. 

Definition of pressure: 

Pressure is defined as the force per unit cross-sectional area. 

       !  

where F is the force applied on the area A. 
The SI unit of pressure is pascal (Pa). 

1 Pa = 1 N m–2. 

5.2	 Pressure in a fluid 

A fluid can be a gas or a liquid. The pressure of a fluid P increases with depth h. 

       !  

where ρ is the density of the liquid and g is the acceleration due to gravity. 

ρ =
M
V

(5.1)

P =
F
A

(5.2)

P = hρg (5.3)
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The pressure depends on three factors: 
1. depth  
2. density of fluid 

3. acceleration due to gravity 

Deriving the equation for pressure in a liquid 

!  

5.3	 Kinetic model of matter 

The kinetic model of matter attempts to explain the behaviour of matter in terms of the motion of 

particles and how they are organised with relation to each other.  

Assumptions of kinetic theory of matter 

• Matter is made up of tiny particles 

• The particles tend to move about randomly. 

• The particles are moving at different high speeds but the average speed of all the particles is 
directly proportional to the thermodynamics temperature of the gas. 

The kinetic model of matter can explain the cause of pressure in gas as well as deducing the factors that 

will affect the pressure. 

volume of water = A × h
mass of water = density ×  volume = ρ × A × h

weight of water = mass × g = ρAhg

pressure =
weight

area

=
ρAhg

A
∴ P = ρgh
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FIG. 5.1 DIAGRAM SHOWS THE DEFINITIONS OF THE 
PARTS USED TO DERIVE THE PRESSURE OF LIQUID AT A 
DEPTH OF h.

A
h

density of liquid ρ



Cause of pressure 

• Pressure is caused by the collisions of air molecules with the wall of the container.  

• When a molecule collides with a surface, the molecule bounces off.  

• The change in momentum of the molecule creates a force on the force.  

• The force exerted on the wall due to all the molecules create the pressure. 

Factors affecting the pressure 

1. the number of molecules that hit each side of the box in one second 

2. the force with which one molecule collides with the wall. 

End of Chapter 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6

Solid deformation 

A force acting on a solid in one dimension, can be classified to two types: 

• tensile(pulling apart) 

• compressive(pushing together) 

6.1	 Hooke’s Law 

Definition of Hooke’s law: 

Hooke’s law states that, provided the elastic limit is not exceeded, the extension of a body is 

proportional to the applied load. 

!  

where k is the spring constant and x is the 
extension of the spring. 

In a extension-force graph (Fig. 6.1), the spring 
constant may be obtained from the gradient of the 

graph. 

Hooke’s Law is only applicable when the 

extension is not beyond the limit of 
proportionality. Elastic limit is the point which the 
spring would not return to the original length after 

the applied force is removed. 

F = k x (6.1)
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F

x

0

Wire obeys Hooke’s law

Wire extended beyond the 
limit of proportionality

limit of proportionality

FIG. 6.1 EXTENSION–FORCE GRAPH OF A PULLED 
WIRE 
Hooke’s law is only applicable when the limit of 
proportionality is not exceeded.



6.2	 Young Modulus 

Definition of stress: 

Stress is the tensile or compressive force acting normally to an area. 

!  

Definition of strain: 

Strain is the ratio of extension over the original length 

!  

Within elastic limit, strain is directly proportional to the stress applied. 

Young modulus is the ratio of stress to strain. 

!  

The Young modulus can be obtained from the gradient of a stress-strain graph. 

The Young modulus of a substance is a constant. It is independent of the physical form of the 
substance. 

stress =
force
area

=
F
A

(6.2)

strain =
extension

original length

=
x
L

(6.3)

Young modulus =
stress
strain

=
σ
ε

(6.4)
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Determining the Young modulus of a metal 

 
• A long wire is used so that the extension can be measured with less uncertainty. 

• A travelling microscope is used to read the position of the marker. 

• The extension can be obtained by subtracting the new position of the marker from the old position. 

• The diameter of the wire is measured using a micrometer screw gauge across the length of the wire, 
and an average is obtained. 

• Once the wire is loaded in increasing steps, the load must be gradually decreased to ensure that 
here has been no permanent deformation of the wire. 

• A graph of stress vs strain is drawn, and the Young modulus is obtained from the gradient of the 

graph. 

6.3	 Elastic limit 

When the extension of a material falls within the elastic limit, it obeys Hooke’s law and extends 

proportionally to the force applied. When the force is removed, it will return back to the original length. 
The material is said to be elastic. 

However, if the extension exceeds the elastic limit, the material will not return back to the original 
length. The material is said to undergo plastic deformation. 
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FIG. 6.2 EXPERIMENT TO MEASURE THE YOUNG 
MODULUS OF A WIRE



6.4	 Work done in extension 

Energy is expended to extend or compressed a material. The amount of work done can be found from 
the area under the force-extension graph (Fig. 6.3A). 

If the extension of the material does not exceed the elastic limit (Fig. 6.3B), then the work done will be 

the area of a triangle i.e. 

!  

Given that the extension is less than the limit of proportionality, 

!  

End of Chapter 

Work done = 1
2 Fx (6.5)

F = k x
∴ W = 1

2 Fx

= 1
2 k x2 (6.6)
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FIG. 6.3A FORCE-EXTENSION GRAPH 
OF A MATERIAL THAT IS STRETCHED 
BEYOND THE ELASTIC LIMIT.
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x

0

work done = area of 
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FIG. 6.3B FORCE-EXTENSION GRAPH 
OF A MATERIAL THAT IS NOT 
STRETCHED BEYOND THE ELASTIC 
LIMIT. IT OBEYS HOOKE’S LAW.



7

Work, energy and power 

7.1	 Work 

Definition of work: 

Work done by a force is the product of the forces and the distance moved in the direction of 
the force. 

       !  

where W is work done, F is the force acting on the body and s is the displacement the body moves and 
θ is the direction of s with respect to the force F.  

SI unit of energy: joule (J) 
1 J = 1 N m 

W = F × s cos θ (7.1)
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W = F × s
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W = F cos θ × s

F
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FIG. 7.1 CALCULATION OF WORK DONE 
Work done must be calculated using the component of the 
force in the direction of the displacement.



Work done must be calculated by using the component of the force that is parallel to the direction of the 
displacement. 

If the two directions are the same, work is done on the object and the objects gains energy. 
If the two directions are opposite, then energy is lost through work done(typically as friction or air 
resistance) 

Work done by a gas 

Work done by a gas equals to the product of the pressure it exerts over the cross-sectional area and the 
displacement the piston moves. 

!  

7.2	 Efficiency 

Definition of efficiency: 

Efficiency is the ratio of the useful output energy to the total input energy expressed as a 
percentage.  

     !  

It is important for you to determine what makes the useful output energy. 

F = p × A
W = p × A × s

= p × V (7.2)

efficiency =
useful output energy

total input energy
× 100 % (7.3)
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Examples of useful output energy in energy conversions 

Table 7.1 shows some examples of energy being used to do work and the corresponding energy that are 
lost or not tapped. The total energy used for efficiency calculation is the sum of both useful energy and 
the wasted and untapped energies. 

Deriving the formula of gravitational potential energy 

In a uniform gravitational field, the weight of the 
body being raised is a constant, mg. 

To raise the body through a height h, a force by 
an external agent equals to the weight is needed. 

This force exerted over the distance h, is the 
work done on the body. 

Since the gravitational potential energy equals to 
the work done by this external agent in raising the 
height of the body, we can equate the increase in 

gravitational potential energy to the work done 

!  ΔEP = mgΔh (7.4)
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F

Δ h

FIG. 7.2 A BALL MOVED AGAINST GRAVITY THROUGH 
A HEIGHT Δh IN THE DIRECTION OF FORCE F.

TABLE 7.1 SHOWS SOME EXAMPLES OF ENERGY BEING USED TO DO USEFUL WORK AND ENERGY THAT ARE 
EITHER WASTED OR NOT TAPPED. TOTAL ENERGY IS THE SUM OF ALL THESE ENERGIES.

Scenario Useful energy Wasted energy / energy not tapped

A luggage being delivered from the 
ground floor to the first floor by an 
elevator

Gain in gravitational 
potential energy

• Heat

A man cranking a generator to 
produce electricity

Electrical energy • Heat

Water flowing through a 
hydroelectric damp

Electrical energy • kinetic energy of water flowing through the 
damp

• heat

Wind flowing through a windmill Electrical energy • Kinetic energy of wind that flows through 
the wind mill

• Heat



7.3	 Different forms of potential energy 

• Electrical potential energy: capacitor. A capacitor stores electrical charges of equal but opposite 
signs on each of its plates. As such, a capacitor does not store any net charge. However, since the 

charges are separated, it stores electrical potential energy. 

• Elastic potential energy: spring. A spring stores elastic potential energy when it is stretched or 
compressed. 

• Chemical potential energy: food and battery. 

• Nuclear energy: heavy nuclei releases nuclear energy in the form of kinetic energy of the daughter 
particles in a radioactive decay. 

7.4	 Kinetic Energy 

Definition of kinetic energy: 

Kinetic energy is the energy due to motion 

!  

Deriving the formula 

An object acted upon by a constant force F accelerates from rest to a velocity v follows the equation  

!  

Since work = force × distance, 

!  

EK = 1
2 mv2 (7.5)

v2 = 2as

s =
v2

2a

work done = f × s

= ma v2

2a

∴ EK = 1
2 mv2
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7.5	 Gravitational potential energy and kinetic energy transformation 

When a high object falls to a lower height, the GPE is converted 
to KE. The increase in KE cause the object to increase in speed. 

The decrease in height should always be calculated based on the 
drop in vertical height. 

In Fig. 7.3, the gravitational potential energy at point A is 
converted to kinetic energy at point B. At any point between A 
and B, the pendulum has a combination of GPE and KE. 

7.6	 Power 

Definition of power: 

Power is defined as the work done per unit time. 

From the definition,  

!  

Since ! , 

             !  

The equation means that for an object moving at a constant velocity v due to an applied force F, the 
power required to maintain the motion is ! . It is important to understand that this formula can only be 

applied in situations where F and v is constant. 

End of Chapter 

P =
W
Δt

(7.6)

W = F × Δs

P =
FΔs
Δt

= F ×
Δs
Δt

∴ P = F v (7.7)

F v
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FIG. 7.3 CONVERSION BETWEEN 
GRAVITATIONAL POTENTIAL ENERGY 
AND KINETIC ENERGY 
Note that the change in height is 
measured from the centre of mass 
of the ball.
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